

WCFS1016V1C

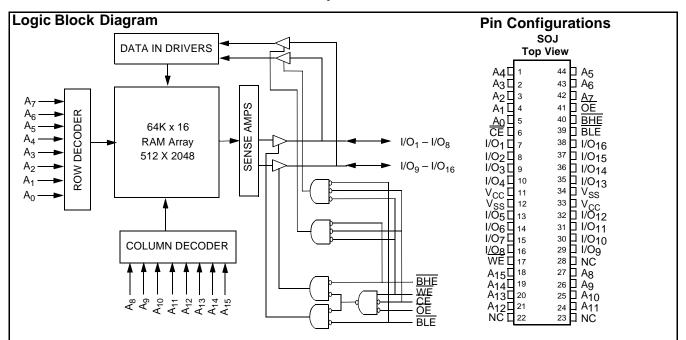
Features

- 3.3V operation (3.0V-3.6V)
- High speed
 - —t_{AA} = 12 ns
- CMOS for optimum speed/power
- Automatic power-down when deselected
- Independent control of upper and lower bits
- Available in 400-mil SOJ

Functional Description

The WCFS1016V1C is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

<u>Writing</u> to the device is accomplished by taking Chip Enable $(\overline{\underline{CE}})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀)


64K x 16 Static RAM

through A_{15}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A_0 through A_{15}).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected (\overrightarrow{CE} HIGH), the outputs are disabled (\overrightarrow{OE} HIGH), the BHE and BLE are disabled (\overrightarrow{BHE} , BLE HIGH), or during a write operation (\overrightarrow{CE} LOW, and \overrightarrow{WE} LOW).

The WCFS1016V1C is available in 400-mil-wide SOJ packages.

Selection Guide

	WCFS1016V1C-12
Maximum Access Time (ns)	12
Maximum Operating Current (mA)	150
Maximum CMOS Standby Current (mA)	5

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} to Relative GND ^[1] –0.5V to +4.6V
DC Voltage Applied to Outputs in High Z State ^[1] 0.5V to V_{CC} +0.5V DC Input Voltage ^[1] 0.5V to V_{CC} +0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	.>200 mA

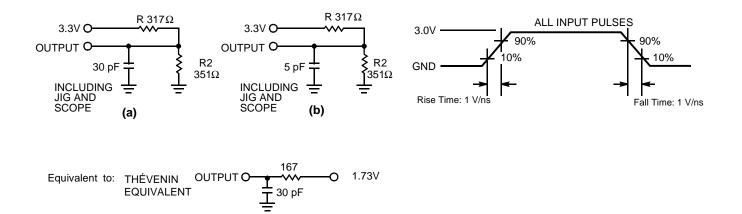
Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	$3.3V \pm 10\%$

Electrical Characteristics Over the Operating Range

		Test Conditions	WCFS10	16V1C 12ns		
Parameter	Description		Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V	
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	V	
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	μA	
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC},$ Output Disabled	-1	+1	μA	
ICC	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$		150	mA	
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\label{eq:max_constraint} \begin{array}{ c c } \hline \underline{Max}. \ V_{CC}, \\ \hline CE \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		40	mA	
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \displaystyle \frac{Max. \ V_{CC},}{CE \geq V_{CC} - 0.3V,} \\ V_{IN} \geq V_{CC} - 0.3V, \\ or \ V_{IN} \leq 0.3V, \\ f = 0 \end{array}$		5	mA	

Capacitance^[3]


Parameter	Parameter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 MHz$	6	pF
C _{OUT}	Output Capacitance		8	pF

Note:

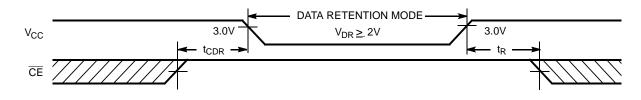
V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "instant on" case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

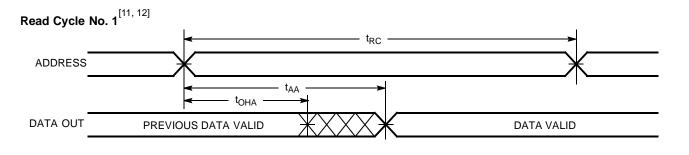
Switching Characteristics^[4] Over the Operating Range

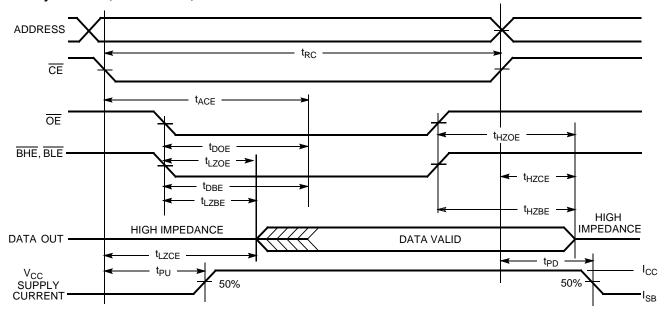
		WCFS101	6V1C 12ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE			•	•
t _{RC}	Read Cycle Time	12		ns
t _{AA}	Address to Data Valid		12	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		12	ns
t _{DOE}	OE LOW to Data Valid		6	ns
t _{LZOE}	OE LOW to Low Z	0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		12	ns
t _{DBE}	Byte Enable to Data Valid		6	ns
t _{LZBE}	Byte Enable to Low Z	0		ns
t _{HZBE}	Byte Disable to High Z		6	ns
WRITE CYCLE ^[7]			•	•
t _{WC}	Write Cycle Time	12		ns
t _{SCE}	CE LOW to Write End	9		ns
t _{AW}	Address Set-Up to Write End	8		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	8		ns
t _{SD}	Data Set-Up to Write End	6		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	[6]			ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6	ns
t _{BW}	Byte Enable to End of Write	8		ns

Data Retention Characteristics Over the Operating Range


Parameter	Description	Conditions ^[8]	Min.	Max.	Unit
V _{DR}	V_{CC} for Data Retention		2.0		V
t _{CDR} ^[9]	Chip Deselect to Data Retention Time		0		ns
t _R ^[10]	Operation Recovery Time	$\begin{array}{l} \text{CE} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V} \text{ or } \text{V}_{\text{IN}} \leq 0.3\text{V} \end{array}$	t _{RC}		ns

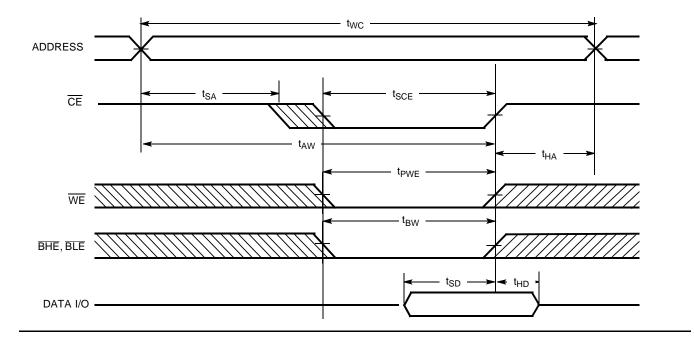
Notes:


Notes: 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{OL}I_{OH}$ and 30-pF load capacitance. 5. I_{HZOE} , I_{HZEE} , I_{HZEE} , I_{HZCE} , and I_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 6. At any given temperature and voltage condition, I_{HZCE} is less than I_{LZOE} , I_{HZOE} is less than I_{LZOE} , and I_{LZWE} for any given device. 7. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 8. No input may exceed $V_{CC} + 0.5V$. 9. Tested initially and after any design or process changes that may affect these parameters. 10. $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 and slower speeds.

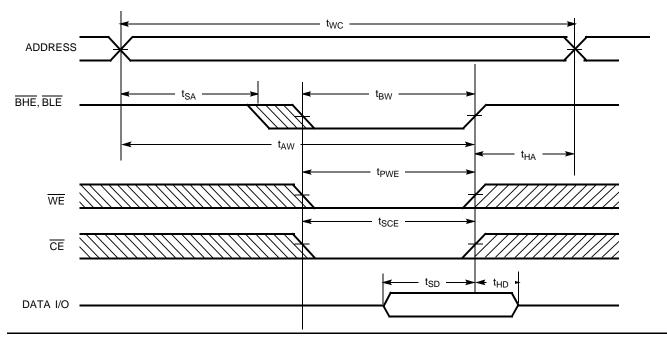

Data Retention Waveform

Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[12, 13]


Notes:

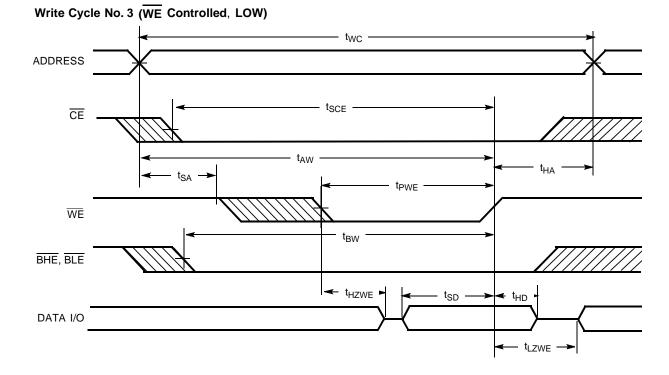
- 11. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BHE} = V_{IL}$.
- WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (\overline{CE} Controlled)^[14, 15]

Write Cycle No. 2 (BLE or BHE Controlled)



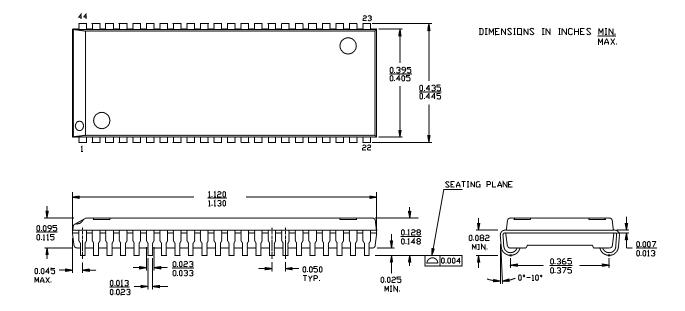
Notes:

Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
 If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ -I/O ₁₆	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read - All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read - Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write - All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write - Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write - Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	WCFS1016V1C-JC12	J	44-Lead (400-Mil) Molded SOJ	Commercial

Package Diagrams

Document Title: WCFS1016V1C 64K x 16 Static RAM				
REV.	Issue Date	Orig. of Change	Description of Change	
**	4/19/02	XFL	NEW DATASHEET	